

XIX OLIMPIADA QUÍMICA 2005

CUESTIONES

- 1. La frase "la masa atómica del aluminio es 27,00", sugiere cuatro interpretaciones. Señala cuál de ellas es la equivocada.
 - a. La masa de un átomo de aluminio es 27,00 g.
 - b. La masa de un átomo de aluminio es 27,00 u.m.a.
 - c. La masa de un mol de átomos de aluminio es 27,00 g.
 - d. Un átomo de aluminio es 27,00 veces más pesado que 1/12 de un átomo de 12C.
- 2. Dadas las siguientes cantidades de C₃H₈ (g). ¿En cuál de ellas existen únicamente 11 átomos ¿
 - a. 22,4 L de C₃H₈ en condiciones normales.
 - b. En un mol de C₃H₈ en condiciones normales.
 - c. En 44 gramos de C₃H₈.
 - d. $7,31\cdot10^{-23}$ g de C₃H₈
- 3. Los únicos productos del análisis de un compuesto puro fueron 0,5 moles de átomos de C y 0,75 moles de átomos de hidrógeno, lo que indica que la fórmula empírica del compuesto es:
 - a. CH₄
 - b. CH
 - c. CH₂
 - d. C_2H_3
- 4. Las formulas empíricas de tres compuestos son:
 - I. a- CH₂O
 - II. b-CH₂
 - III. c- C₃H₇Cl

Suponiendo que un mol de cada compuesto I, II y III, se oxida completamente y que todo el carbono se convierte en dióxido de carbono, la conclusión más razonable de esta información es que:

- a. El compuesto (I) forma el mayor peso de CO₂.
- b. El compuesto (II) forma el mayor peso de CO2.
- c. El compuesto (III) forma el mayor peso de CO₂.
- d. No es posible deducir cuál de esos compuestos dará el mayor peso de CO2.
- 5. El AgNO₃ reacciona tanto con NaCl como con KCl para dar, en ambos casos AgCl. Si 1 gramo de una muestra reacciona con AgNO₃, se forman 2,15 gramos de AgCl. La muestra podría estar formada por:
 - a. Sólo KCI. Datos: N = 14 Na= 23 O= 16
 - b. Sólo NaCl. Cl = 35,5 K = 39 Ag =108
 - c. Una mezcla de KCI y NaCI.
 - d. No es posible determinarlo.
- 6. ¿Cuál de las siguientes afirmaciones es cierta?
 - a. El calor de formación del Fe(I) es cero.

- b. En algunas reacciones $\Delta E = \Delta H$.
- c. La condensación es un proceso endotérmico.
- d. Para un mismo proceso la variación de entalpía depende de que el proceso tenga lugar a presión ó a volumen constante.
- 7. ¿Cuáles de las siguientes afirmaciones son falsas?
 - 1) El método más preciso para calcular ΔH de una reacción es a partir de las energías de enlace.
 - 2) El calor de formación del Hg(s) es cero.
 - 3) El calor de formación del Cl(g) es cero.
 - 4) El valor de ΔH de una reacción puede hallarse restando a las energías de enlace de los productos las energías de enlace de los reactivos.
 - a. Todas.
 - b. 1, 2 y 3
 - c. 1, 3 y 4.
 - d. 1 y 4.
- 8. De las siguientes proposiciones. ¿Cuál es cierta?
 - a. En un proceso adiabático, ΔH siempre será igual a cero.
 - b. El calor estándar de formación de un elemento es negativo.
 - c. Q+W es una función de estado.
 - d. Cualquier reacción con ΔG> 0 será muy lenta.
- 9. Toda reacción química que transcurre espontáneamente lo hace:
 - a. Con disminución de energía libre.
 - b. Con aumento de la entropía del universo.
 - c. Hasta que se agotan los reactivos.
 - d. Hasta alcanzar el cero absoluto.
- 10. ¿Cuál de las siguientes afirmaciones es falsa?
 - a. En un proceso espontáneo la entropía del sistema puede disminuir.
 - b. En un proceso espontáneo puede ser endotérmico.
 - c. En un proceso espontáneo a presión y temperatura constante la energía aumenta sólo cuando realiza trabajo a presión volumen.
 - d. En un proceso espontáneo la variación de la entropía del sistema puede ser nula.
- 11. A elevada temperatura y presión constante es imposible invertir la siguiente reacción:

2KClO₃(s) → 2 KCl(s) + 3 O₂(g) Δ H = -10,6 Kcal. Por tanto Δ S debe ser:

- a. Positivo.
- b. Negativo
- c. Cero
- d. $\Delta S > \Delta H$.
- 12. Para preparar una disolución 1 M de un compuesto sólido muy soluble en agua. ¿Qué sería necesario hacer?
 - a. Añadir un litro de agua a un mol del compuesto.
 - b. Añadir un mol del compuesto a 1 Kg de agua.
 - c. Añadir agua a un mol del compuesto hasta completar un Kg de disolución.
 - d. Disolver un mol del compuesto en suficiente cantidad de agua y completar hasta 1 litro de disolución.
- 13. ¿Cuál es la molalidad de una disolución acuosa en la que la fracción molar del soluto es 0,1000?

- a. 0,010
- b. 6,17
- c. 0,610
- d. 0,100
- 14. Se mezclan 100 mL de una disolución de HBr 0,20 M con 250 mL de HCl 0,10 M. Si se supone que los volúmenes son aditivos. ¿Cuáles serán las concentraciones de los iones en disolución?
 - a. $[H^+] = [CI^-] = [Br^-]$
 - b. $[H^+] > [CI^-] > [Br^-]$
 - c. $[H^+] > [Br^-] > [Cl^-]$
 - d. $[H^+] > [Br^-] = [Cl^-]$
- 15. Un elemento X tiene la configuración electrónica: 1s² 2s² 2p6 3s² 3p6 5s¹. ¿Cuáles de las siguientes afirmaciones son correctas ¿.
 - 1- El átomo X se encuentra en su estado fundamental.
 - 2- El átomo X se encuentra en su estado excitado.
 - 3- Al pasar el electrón desde el orbital 4s al 5s se emite energía luminosa que da lugar a una línea del espectro.
 - 4- El elemento X pertenece al grupo de los metales alcalinos.
 - 5- El elemento X pertenece al 5º periodo del sistema periódico.
 - a. 1, 3 y 4.
 - b. 2, 3 y 5.
 - c. 2 y 4.
 - d. 2 y 5.
- 16. Los elementos ¹³⁰₅₂Te , ¹³²₅₄Xe , ¹³⁵₅₅Cs , ¹³⁴₅₆Ba poseen algo en común. ¿Cuál de las siguientes propuestas es cierta?
 - a. Pertenecen todos al mismo periodo.
 - b. El estado de oxidación más probable para todos ellos es de + 2.
 - c. Los núcleos de los cuatro elementos contienen todos el mismo número de neutrones.
 - d. Son isótopos entre sí.
- 17. Cuatro elementos distintos tienen las siguientes configuraciones electrónicas:
 - A: 1s² 2s² 2p²
 - B: 1s² 2s² 2p⁵
 - C: 1s² 2s² 2p⁶ 3s² 3p¹
 - D: 1s2 2s2 2p6 3s2 3p6 4s1

¿Cuáles son las fórmulas de los compuestos que B puede formar con todos los demás ¿.

- a. AB₄, CB₃, DB.
- b. AB₂, CB, DB.
- c. A₄B, C₃B, D₂B.
- d. AB₄, CB, DB₂.
- 18. Si para el equilibrio: 2 SO₂(g) + O₂(g) ≒ 2 SO₃ (g), suponemos que las concentraciones iniciales de SO₂, O₂ y SO₃ son todas 2,0 M. ¿Cuáles de los siguientes grupos de valores no es posible como concentración de equilibrio?

	$[SO_2]$	$[O_2]$	[SO ₃]
a.	1,8	1,9	2,2
b.	2,2	2,1	1,8
C.	2,4	2,4	1,6
d.	1,4	1,7	2,6

- 19. En una reacción en equilibrio:
 - a. Lo único que puede modificar las concentraciones de los componentes es un cambio en la temperatura.
 - b. Un cambio en la temperatura no cambiará nunca las concentraciones de los componentes.
 - c. Un cambio de presión bastará siempre para cambiar las concentraciones de los componentes.
 - d. Un cambio en la concentración de cualquier componente cambiará todas las concentraciones.
- 20. El Ag₂CO₃(s) se descompone según la reacción: Ag₂CO₃(s) \leftrightarrows Ag₂O(s) + CO₂(g), con Kp= 0,0095 a 120 °C. Si se quiere impedir cualquier pérdida de peso al pesar Ag₂CO₃ a 120 °C, la presión parcial del CO₂ deberá ser:
 - a. Mayor que 0,0095 atm.
 - b. Menor que 0,0095 atm.
 - c. Igual a la presión parcial del Ag₂O (s).
 - d. Iqual a 1 atm.
- 21. Tenemos la reacción: 2 NO(g) + O₂(g) \leftrightarrow 2 NO₂(g), con \triangle H = -113,0 KJ y ecuación de velocidad v = K·[NO]²·[O₂] . ¿Cuál de los siguientes cambios aumentará el rendimiento en NO₂ y la velocidad?.
 - a. Un aumento de la presión total a temperatura constante.
 - b. Un aumento de la temperatura.
 - c. Adición de un catalizador a temperatura constante.
 - d. Un aumento de volumen a temperatura constante.
- 22. La velocidad inicial de la reacción, 2 A + B → C es ocho veces la constante de velocidad, cuando [A] = 2 M y [B] = 4 M. ¿Cuál será la velocidad cuando la concentración de C sea 0,2 M si la concentración inicial de cada uno de los reactivos era 1 M?
 - a. v = 3 K
 - b. v = 0.5 K

 - c. v = 2 K d. v = 8 K.
- 23. En una reacción A + B \rightarrow C , la ecuación de velocidad es: v= K [A]^{1/2} [B] ¿Cuál de las siguientes afirmaciones es falsa?
 - a. Si la concentración de B se reduce a la mitad, la velocidad se reduce a la mitad.
 - b. El orden de la reacción es 1,5.
 - c. Si las concentraciones de A y B se duplican, la velocidad de la reacción no se modifica.
 - d. El orden de reacción respecto de A es 0,5.
- 24. Una reacción cuyo Δ H es 15 KJ, tiene una energía de activación de 70 KJ. Si se introduce un catalizador, la energía de activación baja a 40 KJ. ¿Cuál será el valor de Δ H para la reacción catalizada?
 - a. -15 KJ
 - b. 15 KJ
 - c. 45 KJ
 - d. -45 KJ
- 25. El mecanismo propuesto para la descomposición del ozono mediante el óxido nítrico es:
 - 1- $NO + O_3 \rightarrow NO_2 + O_2$
 - 2- $O_3 + O_2 \rightarrow 2 O_2 + O$
 - 3- $NO_2 + O \rightarrow NO + O_2$

¿Qué se puede afirmar?

- a. La ecuación de velocidad será v = [NO][O₃]
- b. Este mecanismo es imposible.
- c. El NO actúa como catalizador.
- La etapa determinante de la velocidad será la 3.

- 26. Un ácido débil monoprótico está ionizado un 1% a 25 ° C. ¿Cuál de los siguientes datos sería necesario conocer además para calcular la constante de ionización del ácido ¿.
 - a. La conductividad equivalente a dilución infinita.
 - b. La masa molecular del ácido.
 - c. El pH de la disolución.
 - d. El producto iónico del agua.
- 27. ¿Cuántos iones se encuentran presentes en 2,0 L de una disolución de sulfato potásico, que tiene una concentración de 0,855 mol/L?
 - a. 3.09·10²²
 - b. 1,81·10²²
 - c. 3,09·10²⁴
 - d. 1,03·10²⁴
- 28. Un paciente que padece una úlcera duodenal puede presentar una concentración de HCl en su jugo gástrico 0,08 M. Suponiendo que su estómago recibe 3 litros diarios de jugo gástrico. ¿Qué cantidad de medicina conteniendo 2,6 g de Al(OH)₃ por 100 mL debe consumir diariamente el paciente para neutralizar el ácido ¿. (Masas moleculares: Al (OH)₃ = 78 HCl = 36,5)
 - a. 27 mL
 - b. 80 mL
 - c. 240 mL
 - d. 720 mL.
- 29. Para las reacciones: $2 SO_2(g) + O_2(g) \leftrightarrow 2 SO_3(g)$ y $SO_2(g) + 1/2 O_2 \leftrightarrow SO_3(g)$, se cumple a la misma temperatura que:
 - a. $Kp_1 = Kp_2$
 - b. $Kp_1 = (Kp_2)^2$
 - c. $Kp_1 = 2 Kp_2$
 - d. $Kp_1 = (Kp_2)^{1/2}$
- 30. El vinagre es una disolución concentrada de ácido acético, CH₃–COOH. Cuando se trata una muestra de 8,00 g de vinagre con NaOH 0,200 M, se gastan 51,10 mL hasta alcanzar el punto de equivalencia. El porcentaje en masa del ácido acético en dicho vinagre es:

- a. 1,36 %
- b. 3,83 %
- c. 7,67 %
- d. 5,67 %

PROBLEMAS

- Se introdujo cierta cantidad de NaHCO₃ en un recipiente vacío. A 120 °C se estableció el equilibrio siguiente: 2 NaHCO₃ (s) ↔ Na₂CO₃ (s) + CO₂ (g) + H₂O (g) −50 KJ/mol cuando la presión del recipiente era 1720 mmHg. Calcula:
 - a. Las presiones parciales del CO₂ y del H₂O en el equilibrio.
 - b. El valor de Kp y Kc.
 - c. Las concentraciones de las sustancias en el equilibrio.
 - d. Si añadimos 1 gramo de NaHCO3. ¿Qué le ocurrirá a la cantidad de CO2 ¿
 - e. Queremos obtener más cantidad de agua. ¿Cómo lo hacemos ¿
 - f. Hacia donde se desplaza el equilibrio si añadimos un catalizador.

- 2. Se prepara una disolución de ácido acético añadiendo agua hasta que el pH resulte igual a 3,0. El volumen final de la disolución es 0,400 litros. Calcula:
 - a. La concentración molar de ácido en la disolución y la cantidad de ácido que contiene esa disolución.
 - b. El grado de disociación. Escriba el equilibrio que tiene lugar.
 - c. El volumen de disolución 1,00 M de hidróxido de sodio necesarios para neutralizar totalmente la disolución.

Datos: $K_a = 1,8.10^{-5} C = 12 H= 1 O= 16$

- 3. Dada la siguiente reacción: 2 NO (g) + H_2 (g) \rightarrow N_2 (g) + 2 H_2 O (g) Calcula:
 - a. La variación de entalpía estándar, así como el valor de esa entalpía para la reacción de 20 gramos de NO.
 - b. Es una reacción espontánea.
 - c. Para la reacción anterior se han obtenido los siguientes datos:

Experiencia	[NO] (mol/l)	[H ₂] (mol/l)	V _o (mol/l.s)
1	0,1	0,1	1,35·10 ⁻²
2	0,2	0,1	2,70·10 -2
3	0,2	0,2	5,40·10 ⁻²

Calcular la ecuación de la velocidad, su constante y la velocidad cuando: [NO] = 0,15 M [H_2] = 0,15 M

Datos: ΔH^{o_f} NO = 90,4 kJ/mol ΔH^{o_f} H₂O = - 241,8 kJ/mol; ΔS^{o} H₂O(g) = 188,7 J/mol.K ΔS^{o} H₂ (g)= 131 J/mol.K ΔS^{o} N₂ (g)= 192 J/mol.K ΔS^{o} NO(g) = 12,40 J/mol.K