$3^{r d}$

International Chemistry Olympiad

6 theoretical problems
2 practical problems

THE THIRD
 INTERNATIONAL CHEMISTRY OLYMPIAD 1-5 JULY 1970, BUDAPEST, HUNGARY

THEORETICAL PROBLEMS

PROBLEM 1

An amount of 23 g of gas (density $\rho=2.05 \mathrm{~g} \mathrm{dm}^{-3}$ at STP) when burned, gives 44 g of carbon dioxide and 27 g of water.

Problem:
What is the structural formula of the gas (compound)?

SOLUTION

The unknown gas: X
From the ideal gas law : $M(\mathrm{X})=\frac{\rho(\mathrm{X}) R T}{p}=46 \mathrm{~g} \mathrm{~mol}^{-1}$

$$
\begin{aligned}
& n(\mathrm{X})=\frac{23 \mathrm{~g}}{46 \mathrm{~g} \mathrm{~mol}^{-1}}=0.5 \mathrm{~mol} \\
& n\left(\mathrm{CO}_{2}\right)=\frac{44 \mathrm{~g}}{44 \mathrm{~g} \mathrm{~mol}^{-1}}=1 \mathrm{~mol}
\end{aligned}
$$

$n(\mathrm{C})=1 \mathrm{~mol}$
$m(\mathrm{C})=12 \mathrm{~g}$

$$
n\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{27 \mathrm{~g}}{18 \mathrm{~g} \mathrm{~mol}^{-1}}=1.5 \mathrm{~mol}
$$

$n(\mathrm{H})=3 \mathrm{~mol}$
$m(\mathrm{H})=3 \mathrm{~g}$

The compound contains also oxygen, since

$$
\begin{aligned}
& m(\mathrm{C})+m(\mathrm{H})=12 \mathrm{~g}+3 \mathrm{~g}=15 \mathrm{~g}<23 \mathrm{~g} \\
& m(\mathrm{O})=23 \mathrm{~g}-15 \mathrm{~g}=8 \mathrm{~g} \\
& n(\mathrm{O})=0,5 \mathrm{~mol} \\
& n(\mathrm{C}): n(\mathrm{H}): n(\mathrm{O})=1: 3: 0,5=2: 6: 1
\end{aligned}
$$

The empirical formula of the compound is $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$.

Ethanol is liquid in the given conditions and therefore, the unknown gas is dimethyl ether.

PROBLEM 2

A sample of crystalline soda (A) with a mass of 1.287 g was allowed to react with an excess of hydrochloric acid and $100.8 \mathrm{~cm}^{3}$ of a gas was liberated (measured at STP).

Another sample of different crystalline soda (B) with a mass of 0.715 g was decomposed by $50 \mathrm{~cm}^{3}$ of 0.2 N sulphuric acid.

After total decomposition of soda, the excess of the sulphuric acid was neutralized which required $50 \mathrm{~cm}^{3}$ of 0.1 N sodium hydroxide solution (by titration on methyl orange indicator).

Problems:

2.1 How many molecules of water in relation to one molecule of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ are contained in the first sample of soda?
2.2 Have both samples of soda the same composition?

Relative atomic masses: $\quad A_{r}(\mathrm{Na})=23 ; \quad A_{r}(\mathrm{H})=1 ; \quad A_{r}(\mathrm{C})=12 ; \quad A_{\mathrm{r}}(\mathrm{O})=16$.

SOLUTION

2.1 Sample A: $\quad \mathrm{Na}_{2} \mathrm{CO}_{3} . \times \mathrm{H}_{2} \mathrm{O}$
$m(\mathrm{~A})=1.287 \mathrm{~g}$
$n\left(\mathrm{CO}_{2}\right)=\frac{p V}{R T}=0.0045 \mathrm{~mol}=n(\mathrm{~A})$
$M(\mathrm{~A})=\frac{1.287 \mathrm{~g}}{0.0045 \mathrm{~mol}}=286 \mathrm{~g} \mathrm{~mol}^{-1}$
$M(\mathrm{~A})=M\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)+\mathrm{x} M\left(\mathrm{H}_{2} \mathrm{O}\right)$
$\mathrm{x}=\frac{M(\mathrm{~A})-M\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)}{M\left(\mathrm{H}_{2} \mathrm{O}\right)}=\frac{(286-106) \mathrm{g} \mathrm{mol}^{-1}}{18 \mathrm{~g} \mathrm{~mol}^{-1}}=10$

Sample A: $\mathrm{Na}_{2} \mathrm{CO}_{3} .10 \mathrm{H}_{2} \mathrm{O}$
2.2 Sample B: $\mathrm{Na}_{2} \mathrm{CO}_{3} . \times \mathrm{H}_{2} \mathrm{O}$
$m(B)=0.715 \mathrm{~g}$
$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH}=\mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
$n(\mathrm{NaOH})=c V=0.1 \mathrm{~mol} \mathrm{dm}^{-3} \times 0.05 \mathrm{dm}^{3}=0.005 \mathrm{~mol}$
Excess of $\mathrm{H}_{2} \mathrm{SO}_{4}: n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=0.0025 \mathrm{~mol}$
Amount of substance combined with sample B:
$n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=0.0025 \mathrm{~mol}=n(\mathrm{~B})$
$M(\mathrm{~B})=\frac{0.715 \mathrm{~g}}{0.0025 \mathrm{~g} \mathrm{~mol}^{-1}}=286 \mathrm{~g} \mathrm{~mol}^{-1}$

Sample B: $\mathrm{Na}_{2} \mathrm{CO}_{3} .10 \mathrm{H}_{2} \mathrm{O}$

PROBLEM 3

Carbon monoxide was mixed with 1.5 times greater volume of water vapours. What will be the composition (in mass as well as in volume \%) of the gaseous mixture in the equilibrium state if 80% of carbon monoxide is converted to carbon dioxide?

SOLUTION

$\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}_{2}+\mathrm{H}_{2}$
Assumption:
$n(\mathrm{CO})=1 \mathrm{~mol}$
$n\left(\mathrm{H}_{2} \mathrm{O}\right)=1.5 \mathrm{~mol}$

After reaction:

$$
\begin{aligned}
& n(\mathrm{CO})=0.2 \mathrm{~mol} \\
& n\left(\mathrm{H}_{2} \mathrm{O}\right)=0.7 \mathrm{~mol} \\
& n\left(\mathrm{CO}_{2}\right)=0.8 \mathrm{~mol} \\
& n\left(\mathrm{H}_{2}\right)=0.8 \mathrm{~mol}
\end{aligned}
$$

$$
\varphi(\mathrm{CO})=\frac{V(\mathrm{CO})}{V}=\frac{0.2 \mathrm{~mol}}{2.5 \mathrm{~mol}}=0.08 \text { i.e. } 8 \mathrm{vol} . \% \text { of } \mathrm{CO}
$$

$$
\varphi\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{V\left(\mathrm{H}_{2} \mathrm{O}\right)}{V}=\frac{0.7 \mathrm{~mol}}{2.5 \mathrm{~mol}}=0.28 \text { i.e. } 28 \text { vol. } \% \text { of } \mathrm{H}_{2} \mathrm{O}
$$

$$
\varphi\left(\mathrm{CO}_{2}\right)=\frac{V\left(\mathrm{CO}_{2}\right)}{V}=\frac{0.8 \mathrm{~mol}}{2.5 \mathrm{~mol}}=0.32 \text { i.e. } 32 \mathrm{vol} . \% \text { of } \mathrm{CO}_{2}
$$

$$
\varphi\left(\mathrm{H}_{2}\right)=\frac{V\left(\mathrm{H}_{2}\right)}{V}=\frac{0.8 \mathrm{~mol}}{2.5 \mathrm{~mol}}=0.32 \text { i.e. } 32 \mathrm{vol} . \% \text { of } \mathrm{H}_{2}
$$

Before reaction:

$$
\begin{aligned}
& m(\mathrm{CO})=n(\mathrm{CO}) \times M(\mathrm{CO})=1 \mathrm{~mol} \times 28 \mathrm{~g} \mathrm{~mol}^{-1}=28 \mathrm{~g} \\
& m\left(\mathrm{H}_{2} \mathrm{O}\right)=1.5 \mathrm{~mol} \times 18 \mathrm{~g} \mathrm{~mol}^{-1}=27 \mathrm{~g}
\end{aligned}
$$

After reaction:

$$
\begin{aligned}
& m(\mathrm{CO})=0,2 \mathrm{~mol} \times 28 \mathrm{~g} \mathrm{~mol}^{-1}=5.6 \mathrm{~g} \\
& m\left(\mathrm{H}_{2} \mathrm{O}\right)=0.7 \mathrm{~mol} \times 18 \mathrm{~g} \mathrm{~mol}^{-1}=12.6 \mathrm{~g} \\
& m\left(\mathrm{CO}_{2}\right)=0.8 \mathrm{~mol} \times 44 \mathrm{~g} \mathrm{~mol}^{-1}=35.2 \mathrm{~g} \\
& m\left(\mathrm{H}_{2}\right)=0.8 \times 2 \mathrm{~g} \mathrm{~mol}^{-1}=1.6 \mathrm{~g} \\
& w(\mathrm{CO})=\frac{m(\mathrm{CO})}{m}=\frac{5.6 \mathrm{~g}}{55.0 \mathrm{~g}}=0.102 \text { i.e. } 10.2 \text { mass } \% \text { of } \mathrm{CO} \\
& w\left(\mathrm{H}_{2} \mathrm{O}\right)=\frac{m\left(\mathrm{H}_{2} \mathrm{O}\right)}{m}=\frac{12.6 \mathrm{~g}}{55.0 \mathrm{~g}}=0.229 \text { i.e. } 22.9 \text { mass } \% \mathrm{H}_{2} \mathrm{O} \\
& w\left(\mathrm{CO}_{2}\right)=\frac{m\left(\mathrm{CO}_{2}\right)}{m}=\frac{35.2 \mathrm{~g}}{55.0 \mathrm{~g}}=0.640 \text { i.e. } 64.0 \text { mass } \% \text { of } \mathrm{CO}_{2} \\
& w\left(\mathrm{H}_{2}\right)=\frac{m\left(\mathrm{H}_{2}\right)}{m}=\frac{1.6 \mathrm{~g}}{55.0 \mathrm{~g}}=0.029 \text { i.e. } 2.9 \text { mass } \% \text { of } \mathrm{H}_{2}
\end{aligned}
$$

PROBLEM 4

An alloy consists of rubidium and one of the other alkali metals. A sample of 4.6 g of the alloy when allowed to react with water, liberates $2.241 \mathrm{dm}^{3}$ of hydrogen at STP.

Problems:

4.1 Which alkali metal is the component of the alloy?
4.2 What composition in \% by mass has the alloy?

Relative atomic masses:
$A_{r}(\mathrm{Li})=7 ; \quad A_{r}(\mathrm{Na})=23 ; \quad A_{r}(\mathrm{~K})=39 ; \quad A_{r}(\mathrm{Rb})=85.5 ; \quad A_{r}(\mathrm{Cs})=133$

SOLUTION

4.1 M - alkali metal

Reaction: $2 \mathrm{M}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{MOH}+\mathrm{H}_{2}$
$n\left(\mathrm{H}_{2}\right)=0.1 \mathrm{~mol}$
$n(\mathrm{M})=0.2 \mathrm{~mol}$
Mean molar mass:
$M=\frac{4.6 \mathrm{~g}}{0.2 \mathrm{~mol}}=23 \mathrm{~g} \mathrm{~mol}^{-1}$
4.2 Concerning the molar masses of alkali metals, only lithium can come into consideration, i.e. the alloy consists of rubidium and lithium.
$n(\mathrm{Rb})+n(\mathrm{Li})=0.2 \mathrm{~mol}$
$m(\mathrm{Rb})+m(\mathrm{Li})=4.6 \mathrm{~g}$
$n(\mathrm{Rb}) M(\mathrm{Rb})+n(\mathrm{Li}) M(\mathrm{Li})=4.6 \mathrm{~g}$
$n(\mathrm{Rb}) M(\mathrm{Rb})+(0.2-n(\mathrm{Rb})) M(\mathrm{Li})=4.6$
$n(R b) .85 .5+(0.2-n(R b)) \times 7=4.6$
$n(\mathrm{Rb})=0.0408 \mathrm{~mol}$
$n(\mathrm{Li})=0.1592 \mathrm{~mol}$
$\% \mathrm{Rb}=\frac{0.0408 \mathrm{~mol} \times 85.5 \mathrm{~g} \mathrm{~mol}^{-1}}{4.6 \mathrm{~g}} \times 100=76$

$$
\% \mathrm{Li}=\frac{0.1592 \mathrm{~mol} \times 7 \mathrm{~g} \mathrm{~mol}^{-1}}{4.6 \mathrm{~g}} \times 100=24
$$

PROBLEM 5

An amount of 20 g of cooper (II) oxide was treated with a stoichiometric amount of a warm 20% sulphuric acid solution to produce a solution of copper (II) sulphate.

Problem:

How many grams of crystalline copper(II) sulphate $\left(\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}\right)$ have crystallised when the solution is cooled to $20^{\circ} \mathrm{C}$?

Relative atomic masses: $\quad A_{r}(\mathrm{Cu})=63.5 ; \quad A_{\mathrm{r}}(\mathrm{S})=32 ; \quad A_{\mathrm{r}}(\mathrm{O})=16 ; \quad A_{\mathrm{r}}(\mathrm{H})=1$
Solubility of CuSO_{4} at $20^{\circ} \mathrm{C}$: $s=20.9 \mathrm{~g}$ of CuSO_{4} in 100 g of $\mathrm{H}_{2} \mathrm{O}$.

SOLUTION

$\mathrm{CuO}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{CuSO}_{4}+\mathrm{H}_{2} \mathrm{O}$

$$
n(\mathrm{CuO})=\frac{m(\mathrm{CuO})}{M(\mathrm{CuO})}=\frac{20 \mathrm{~g}}{79.5 \mathrm{~g} \mathrm{~mol}^{-1}}=0.2516 \mathrm{~g}
$$

$n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=n\left(\mathrm{CuSO}_{4}\right)=0.2516 \mathrm{~mol}$

Mass of the CuSO_{4} solution obtained by the reaction:
$m\left(\right.$ solution $\left.\mathrm{CuSO}_{4}\right)=m(\mathrm{CuO})+m\left(\right.$ solution $\left.\mathrm{H}_{2} \mathrm{SO}_{4}\right)=$

$$
=m(\mathrm{CuO})+\frac{n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right) \times M\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)}{w\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)}=20 \mathrm{~g}+\frac{0.2516 \mathrm{~mol} \times 98 \mathrm{~g} \mathrm{~mol}^{-1}}{0.20}
$$

$m\left(\right.$ solution $\left.\mathrm{CuSO}_{4}\right)=143.28 \mathrm{~g}$
Mass fraction of CuSO_{4} :
a) in the solution obtained:

$$
w\left(\mathrm{CuSO}_{4}\right)=\frac{m\left(\mathrm{CuSO}_{4}\right)}{m\left(\text { solution } \mathrm{CuSO}_{4}\right)}=\frac{n\left(\mathrm{CuSO}_{4}\right) \times M\left(\mathrm{CuSO}_{4}\right)}{m\left(\mathrm{solution}_{\left.\mathrm{CuSO}_{4}\right)}\right.}=0.28
$$

b) in saturated solution of CuSO_{4} at $20^{\circ} \mathrm{C}$:

$$
w\left(\mathrm{CuSO}_{4}\right)=\frac{20.9 \mathrm{~g}}{120.9 \mathrm{~g}}=0.173
$$

c) in crystalline $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$:

$$
w\left(\mathrm{CuSO}_{4}\right)=\frac{M\left(\mathrm{CuSO}_{4}\right)}{M\left(\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}\right)}=0.639
$$

Mass balance equation for CuSO_{4} :
$0.28 m=0.639 m_{1}+0.173 m_{2}$
m - mass of the CuSO_{4} solution obtained by the reaction at a higher temperature.
m_{1} - mass of the crystalline $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$.
m_{2} - mass of the saturated solution of CuSO_{4} at $20^{\circ} \mathrm{C}$.
$0.28 \times 143.28=0.639 m_{1}+0.173 \times\left(143.28-m_{1}\right)$
$m_{1}=32.9 \mathrm{~g}$
The yield of the crystallisation is 32.9 g of CuSO $4.5 \mathrm{H}_{2} \mathrm{O}$.

PROBLEM 6

Oxide of a certain metal contains 22.55 \% of oxygen by mass. Another oxide of the same metal contains 50.48 mass \% of oxygen.

Problem:

1. What is the relative atomic mass of the metal?

SOLUTION

Oxide 1: $\mathrm{M}_{2} \mathrm{O}_{\mathrm{x}}$

$$
\begin{align*}
& 2: x=\frac{w(\mathrm{M})}{A_{\mathrm{r}}(\mathrm{M})}: \frac{w(\mathrm{O})}{A_{\mathrm{r}}(\mathrm{O})} \\
& 2: \mathrm{x}=\frac{0.7745}{A_{\mathrm{r}}(\mathrm{M})}: \frac{0.2255}{16}=\frac{54.95}{A_{\mathrm{r}}(\mathrm{M})} \tag{1}
\end{align*}
$$

Oxide 2: $\mathrm{M}_{2} \mathrm{O}_{y}$

$$
\begin{align*}
& 2: \mathrm{y}=\frac{w(\mathrm{M})}{A_{r}(\mathrm{M})}: \frac{w(\mathrm{O})}{A_{\mathrm{r}}(\mathrm{O})} \\
& 2: \mathrm{y}=\frac{0.4952}{A_{r}(\mathrm{M})}: \frac{0.5048}{16}=\frac{15.695}{A_{r}(\mathrm{M})} \tag{2}
\end{align*}
$$

When (1) is divided by (2):

$$
\begin{aligned}
& \frac{y}{x}=\frac{54.95}{15.695}=3.5 \\
& \frac{y}{x}=\frac{7}{2}
\end{aligned}
$$

By substituting $x=2$ into equation (1):
$A_{r}(\mathrm{M})=54.95$
$M=M n$
Oxide $1=\mathrm{MnO}$
Oxide $2=\mathrm{Mn}_{2} \mathrm{O}_{7}$

PRACTICAL PROBLEMS

PROBLEM 1 (Practical)

An unknown sample is a mixture of 1.2-molar $\mathrm{H}_{2} \mathrm{SO}_{4}$ and 1.47-molar HCl. By means of available solutions and facilities determine:

1. the total amount of substance (in val) of the acid being present in $1 \mathrm{dm}^{3}$ of the solution,
2. the mass of sulphuric acid as well as hydrochloric acid present in $1 \mathrm{dm}^{3}$ of the sample.

PROBLEM 2 (Practical)

By means of available reagents and facilities perform a qualitative analysis of the substances given in numbered test tubes and write down their chemical formulas.

Give 10 equations of the chemical reactions by which the substances were proved:
5 equations for reactions of precipitation,
2 equations for reactions connected with release of a gas,
3 equations for redox reactions.

